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A Study on the Finite Element Preprocessing for the Analysis and

Design with Discontinuous Composites

Hong Gun Kim*
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A strategy of finite element (FE) preprocessing of discontinuous fiber or whisker reinforced
composite materials for mechanical analysis and design has been treated in this paper. The
procedures were based on the calculation of the error in energy norm for global convergence and
the traction differential approach at the fiber/matrix interface for local convergence. The mesh
refinement strategy was intended to the j-based generalized approach using the elongated
element at the fiber/matrix interface, which yields significantly different patterns from those
obtained by conventional mesh refinement procedures. This difference may have a critical
bearing on the subsequent thermo-mechanical properties predicted by the finite element analysis
(FEA) . It was found that the FE mesh design of adequate element aspect ratio at the fiber/
matrix interface results in a much more rapid computational convergence rate than that obtained
by the conventional approach.
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rigorous and versatile approach in the composite
analysis and design. While FEA usually gives a
good result, the application of FEA to composite
requires careful attention to the geometry of the
optimum mesh refinement. Intrinsically, FEA
involves the geometric and mathematical discret-
ization of a continuum into a FE mesh which is
reflected by a discretization error in the analysis.
Hence, a posteriori error estimations (Strang and
Fix, 1973) for the FEA solution have become
very essential and are currently an active research
area. These a posteriori error estimates are then
taken as a basis for adaptively refining the mesh.
The meshes can be locally refined based on local
error determinators, uniformally refined based on
a global measure of the discretization error, or
refined by a combination of local and global
error measures.

Babuska and Rheinboldt (1978) have offered
mathematically more rigorous, residual-based
approaches to error analysis. They derived error
bounds for the energy norm of the error based on
the residual of the differential equation. Element
error indicators were introduced as a means of
determining which elements must be refined.
Mesh optimality is based on achieving uniform
error distribution for all elements. Subsequent
work continued to develop residual-based error
estimators and associated adaptive mesh refine-
ment schemes (Babuska and Miller, 1984, Rhein-
boldt, 1985).

Other residual-based methods include the work
of Kelly er al (1983). In an attempt to reduce the
computational burden involved in residual-based
error estimates, the authors proposed the use of
special hierarchical shape functions. The hierar-
chical shape functions essentially permit efficient
p-based error estimates. However, a common
residual-based
methods has been the difficulty of correlating the

fundamental problem of all
restdual, as measured by an integral norm, to the
pointwise error in either the primary displace-
ment variable or its derivatives, such as straing
and stresses.

On the other hand, Zienkiewicz and Zhu
(1987) have derived a new stress-based error
estimator and associated adaptivity algorithm.

This method (hereafter referred to as the ZZ
method) involved obtaining a global least
squares fit of the discontinuous (C~! continuous)
FE stress field with a C° continuous stress field.
The latter stress field is taken as an approxima-
tion to the true stress field, and the difference
between the two tensor fields, as measured by the
energy or [, norm, represents an estimate of the
The authors
asymptotic convergence rate of displacement-

discretization error. invoke the
based finite elements to correlate the norm of the
error in the element stress field to the FE size,
thereby deriving an adaptive element sizing func-
tion for the new mesh.

Ainsworth et al (1989) have shown that the
Z7 error estimator s effective and asymptotically
exact provided that the exact stress boundary
conditions are imposed on the higher other stress
field. However, imposition of exact stress bound-
ary conditions for general multi-dimensional
problems, while straightforward, involves addi-
tional computations. Cauchy stress components
must be transformed to boundary-based normal/
tangential coordinate systems for all boundary
elements. Moreover, the order of the system of
equations generated by the least squares fit prob-
lem is, in general, larger than the original FE
system of equations. Thus, the algorithm is
computationally intensive, unless the coefficient
matrix for the least squares fit problem is
diagonalized as recommended by Zienkiewicz
and Zhu (1987). The effect of this diagonaliza-
tion or lumping of the coefficient matrix on the
effectiveness, accuracy and convergence properties
of the algorithm was not explored by Ainsworth
et al. (1989).

On the other hand, Ohtsubo and Kitamura
(1990) put forward a method by which an ele-
ment-by-element error analysis can be carried
out using an isoparametric element having an
interpolation function one order higher than the
original element and imposing self-equilibrium
conditions in individual elements. Zhu and Zien-
kiewiez (1990) also showed that error estimations
based on higher order approximations of the
gradient field can be directly related to the resid-
ual-based error estimator proposed and analysed
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by Babuska and Rheinboldt (1978).

Recently, Grosse et al. (1992) proposed a new
a posteriori FE error estimator based on von
Mises or effective stress function and on a new
concept of mesh optimality. In their study, the
discretization error is estimated by the L2 norm of
the difference between FE von Mises stress func-
tion and an improved “smoothed” von Mises
stress function. The element error measure is
shown to have a distortional energy interpreta-
tion. The mesh adaptivity algorithm is based on
imposing a nonuniform distribution of allowable
error, as measured by the element’s [, error
norm, based on the element’s stress state. In this
manner, the desired solution accuracy in the mesh
is permitted to vary according to the relative stress
distribution with the highest solution accuracy
required in the highest stressed regions and the
minimum solution accuracy required in the
lowest stressed regions.

The above procedures have yet to be general-
ized and extended to the case of fiber or whisker
reinforced “non-homogeneous” composite mate-
rials. [n discontinuous composite systems,
because the stress field is highly sensitive to the
geometry of fiber and cell, i. e. fiber and/or cell
aspect ratio, the mesh geometry is critical. In such
composites, it is presented that FE meshes of the
appropriately elongated elements are desirable
near the fiber/matrix interface unless element
aspect ratios are too large. In this case, the auto-
matic free mesh generation shows some difficulty
when combining the Regular Element (RE) far
from the fiber/matrix interface, which has 4 near-
ly uniform element aspect ratio, with highly
Elongated Element (EE) at the fiber/matrix
interface having fairly large element aspect ratio.
Most of previous FE error estimation studies used
the local error energy norm for computing the
local error. However, short fiber or whisker rein-
forced composites usually have sharp corners at
the inter-material boundary that can produce a
singularity and a lack of (C° continuity across
fiber/matrix interface (Needleman and Nutt,
1986 ; Nutt and Duva, 1987). Again, this method
has limitations for short fiber or whisker reinfor-
ced composites. Thus far, it is needed to establish

a new local error parameter that provides an
optimal convergence condition.

In this paper, a mesh refinement procedure is
presented using a new local error parameter for a
fiber reinforced composite. It
includes the previous global error energy norm

discontinuous

parameters as well as a new local error parameter
based on a normal traction discontinuity. The
error criteria based on energy have been evaluat-
ed in the fiber and matrix separately for a global
convergence because (" continuity invalidates
this energy approach in the fiber/matrix interface
region. A normal traction differential approach
was applied at the interfacial nodes in order to
predict the local near-interface mesh quality. [t
was found that appropriately high element aspect
ratios near the fiber/matrix interface are very
efficient for modeling with the j~based FE mesh
refinement in discontinuous fiber or whisker rein-
forced composites. Furthermore, this phenome-
non was also explained by the concept of “charac-
teristic element length” depicted by logarithmic
plotting and it demonstrates that there is nothing
really magical.

2. Governing Equations and FE
Formulations

The governing equations and the Galerkin
FEA formulations for the axisymmetric linear
isotropic elasticity used here are presented in this
section. Note that, although on a macroscopic
level short fiber composites are anisotropic mate-
rial at this micromechanical model, we can
assume isotropic material behavior for the fiber
itself and for the matrix itself.

Let w=u(r, z) and w=uw(r,

the radial and axial (fiber direction) components

z) represent

of the displacement field, respectively. The strain-
displacement relationships in linear axisymmetric
elasticity are :
Ju
ar
Er u
=1 ! r
&z ou
0z

du , ow
dz = ar
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where g, is the hoop strain. The constitutive
relations for isotropic axisymmetric elasticity with
initial strains are

Or Er
o &
{o}=1""1=[D]| 1" {~{e) (2)
Oz Ez
Trz Yrz
where
- )
D= —
1=y v y 0
v 1=y oy 0 (3)
(1+y) Q=20 | y 1-y O

and the thermally~induced initial strain tensor, as
is the case here, has the form

(et =a AT (4)

Yz
where ¢ is the material coefficient of thermal
expansion (CTE) and 47T is the temperature
change of the material relative to the strain-free
reference temperature.
Finally, we have the differential equilibrium
conditions for axisymmetric elasticity as follows :
Orrt (60— 6) -t b f=0
1 A (r, 22€2 (5
Ozzt Trzr + T + fz=0

where f, and f, are body forces. The boundary
equilibrium conditions are

Ot TRt ="F,
ritr rz K (7/’ 2) on I (6)
Tz

—_n =

Z'rz/h'r + O‘z;]z -

where n is the unit outward normal to the bound-
ary I" and "z, and 7z, are the externally applied »
and z traction components to the boundary .
In the weak Galerkin FE formulation, residual
functions exist for lack of satisfaction of the
domain and boundary equilibrium equations :
J()‘r,r+‘1_'((7r‘ O9) + Traet 1+
{RQ}:l 1 } (7)
Ozz+ nz.z+~;rrz+fz

i’\lfr* (O‘r?’lr‘i’ Trzhz) }
%Tz_ (frz%r+ Gz%z)

{Rr}:{ (&)

The weighted residual statement enforces these
error functions to be zero in a weighted integral
sense over the domain and on the boundary [ :

J{ NoARr) dl'+ [2 N Ro}d2=0,
(i=1, 2, -+, N) (9)

Here, )V is the total number of nodes and N, is the
weighting function associated with node ;. The
weighting function }; is given by a piecewise
combination of the element interpolating
polynomials associated with node ; used to inter-
polate the element displacement field from un-
known nodal displacements. For this reason, it is
more convenient to express Eq. (9) at the element

level :
{f NARS Al + f  NARE dQ=0,

=1, 2, N} (10)

where element ¢, and the summation sign implies
the proper assembly of element degrees of free-
dom (DOF)
axisymmetric elements, one has

dl'=2mrds (11)

dQ = 2xrdrdz (12)
Here. (/s is the differential
around the element boundary. Substituting Eqs.
(7)., (8). (1) and (12) into Eq. (10), and using
the divergence theorem to integrate by parts, the

into the system equations. For

path coordinate

higher order terms yield

ﬁ [ /S NEE) s + A ) ]V{;} rdrdz

e

o
) L) e re || ge
— f Nix <7’ NE O NE GZ rdrdz
A 0 0 1\71‘8 I‘Vﬁr Oz
Z‘fz
=1, 9, - Ne} (13)

The element displacement field is interpolated
from nodal values using the element interpolation
polynomials N :

{uei[Nf 0 - NE 0}
0 N 0 N&

we
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ut

wt
=[N“NHd*} (14)

Uk

wh.
Equations (1), (2) and (14) are combined to
relate the stress tensor to nodal displacements and

substituted into the righthand side of Eq. (13) to
obtain the following FE equations for linear

axisymrnetric isotropic elasticity with initial
strains :

[Kedy={F}H{FA S (1%
where

(K= [ [BVIDI B rdrdz (16)
(Fet=f [N} ras (a7)
{Ff = » [NV rdrdz (18)

(F)= [ [BVE el rdrdz  (19)

and
IVLL:r 0] N}%"P,r O
1Y e (,1,,>‘ e,
LBGJ: (r)l 1,7 O 5 iVNer 0 (20)
() Niz - 0 Ne.z
I\sz l’\’rl‘?r 1M$?.z i Y’s <r

The element stiffness matrices and element load
vectors are assembled into the system equations.
Kinematic boundary conditions are imposed and
the equations are factored and solved for nodal
displacements. Element strains and stresses are
then recovered via Eqgs. (1), (2) and (14).

3. Description of Geometry, Material
and Loading Condition

The application of FEA to composites requires
careful attention to the geometry of the mesh used
in analysis and design. In a discontinuous fiber
reinforced composite, fiber interaction effects
must be important for understanding the deforma-
tion evolution in the matrix as well as the overall
composite stress-strain behavior except in very
low fiber volume fraction cases (Agarwal et al,

¥ B Fiber
1] saenx

A —— J I B,

Fig. 1 (a) 2-D multi-fiber model for aligned fiber
geometry, (b) Composite RVE containing a

single fiber in a cylindrical matrix volume.

1974 and Christman et al, 1989). A 2-D multiple
fiber model used to develop the physical concepts
is shown in Fig. 1 (a) for the aligned fiber geome-
try.

On the other hand, an axisymmetric single fiber
model corresponding to a 3-D model for the
aligned geometry and fiber/fiber interactions can
be accounted for by use of cell boundary con-
straining conditions. In this study, an axisym-
metric single fiber representative volume element
(RVE) which qualitatively and quantitatively
provides the equivalent results as the 3-D model
was employed as shown in Fig. 1(b). The RVE is
treated as concentric cylinders with diameter [
and length 27 as shown in Fig. [ (b). The spatial
variable for the axial (mechanical foading) direc-
tion is z with the coordinate origin at the fiber
center, whereas the spatial variable for the radial
direction is . For an FE mesh generation, conse-
quently, a quarter of RVE is needed to analyse
due to axisymmetry. FE computations were per-
formed using four noded isoparametric elements.
The schematic domain of the composite and the
decomposed fiber and matrix is shown in Fig. 2
(a) and (b). respectively.

Material properties selected are for Al 2124 as
matrix and SiC whisker as reinforcement. For this
system. values used are [f,=70GPa, v,=0.33
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Fig. 2

(b) decomposed fiber and matrix domains.
and @,=2.36x107%/K for matrix and E,=
480GPa, E,=0.17 and y,=4.3x10"%/K for rein-
forcement (Taya and Arsenalut, 1989, Kim, 1992,
Kim, 1994). Here E is Young's modulus, p is
Poisson’s ratio and is the CTE. The fiber and
matrix materials are assumed to be isotropic, and
the elastic constants and CTE values are assumed
to be temperature independent. The fiber volume
fraction 1/, is used as V,=0.2 and the fiber aspect
ratio s is used as s=4 corresponding to that
observed for SiC whiskers in Al alloys (Ar-
senault and Shi, 1986, Nair and Kim, 1991). Here,
fiber volume fraction is not a sensitive factor or
function in this study. It was only applied to the
case of widely used V,=0.2. The fiber/matrix
bond is assumed to be large enough such that no
debonding is allowed in keeping with the actual
situation in many metal matrix composites (Nair
et al., 1985, Kim, 1994). Therefore, slip at the
fiber/matrix interface is not allowed in this
model. Further, no plastic yielding is allowed,
that is, both matrix and fiber deform in a purely
elastic manner.

Two cases are evaluated for loading conditions
with the same geometry : mechanical loading and
thermal loading due to mismatch of CTE between
the fiber and matrix. For mechanical loading, a
uniform constant composite strain g,=0.1% is
applied on the z=/] surface of the RVE. For
thermal loading, a uniform temperature difference
of AT =-100K as a result of a temperature

A schematic of composite domain and the fiber/matrix decomposition process (a) composite domain,

change (cooling) is applied. Detailed boundary
conditions for mechanical and thermal loading
are given by Kim (1992).

4. Global Error Estimation

The convergence study, also called the mesh
refinement study, is an important and necessary
step in FEA. This step, which estimates the
discretization error in the solution, i1s necessary
because FE solutions are only numerical approxi-
mations. In this section, global error energy as
well as local tractions are introduced for the fiber
and matrix, respectively. The error approximation
technique used here is similar to that given by
Zinkiewicz & Zhu (1987). The key difference is
that continuous stresses are generated directly by
averaging nodal stresses, whereas they impose a
weighted residual quality on the stress error esti-
mate.

In the displacement based FE formulations for
stress—deformation analysis of solids, the displace-
ment field from element is continuous since (C°
continuity field is assumed. However, the FE
stress field, {s} is generally discontinuous across
inter-element boundaries (Cook et al, 1989). To
obtain an improved estimate of the stresses, aver-
aging of the element nodal stresses was employed
in this work, i. e.,

(%) =123 1)

e=1
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where {g*}, is the smoothed stress vector at
node . ¢ is the element number sharing node #,
K is the total number of elements sharing node ,
{6} 1s the unaveraged stress vector at node n for
an element e. Then, the improved stress field in
each element e is obtained by interpolating the
averaged nodel stress vector {#*}, using the
standard FE interpolating polynomials (i. e.
shape functions) [N¢] :

{o*}e=[NeI{a*) (22)
where {¢*}, is the improved stress vector at node

n. An estimated stress error vector function for the
element e is given by

es={o*)*—{a}° (23)
The energy norm of the element stress vector, || ¢, |
is given by

Il esl= [, (esile] egav® (24)

where [D¢] is the element stress-strain matrix.
This measure of the error is sometimes referred to
as the energy error norm.

The energy norm of the stress error over the
entire model for the fiber or for the matrix is
given by the square root of the sum of the square
of the individual element energy error norms :

I ealr=| 20 esli?]” 25)
I ex ln=] Z10 esllar?]” (26)

where A is the number of elements and subscript
f and s represent fiber and matrix, respectively.
The energy norms of the stress error for the fiber
and matrix material regions are normalized by the
energy norm of the exact stress field for the fiber
and matrix regions. The exact energy norms are
estimated from the approximate stress solutions in
the following manner :

Wal =1l é 112+ es |12 27
(Nollal?=11 6 ]2+ es l]* (28)

where e fand | 5 |, and || es || are given by Egs.
(25) and (26). Thus,

06 1,27= 211 6°1,1? (29)

[} 6 1= 200 6° 1)* (30)

Accordingly, normalized percent errors in the
energy norm of the error for fiber and matrix are

given by
_ ” (24 ||f
E,~1OO<——W = ) 31
. | es lln
bmrv100<~—’—” = ) (32)

Application of the global energy error norm
approach to the fiber reinforced composite mate-
rial is accomplished by calculating separately the
global energy norm for fiber and matrix as in Egs.
(31) and (32). This is because, as previously
mentioned, C” continuity in the complete stress
vector does not exist at the fiber/matrix interface.

5. Local Error Estimation

Although the maximum stress is often used for
local convergence, the presence of the singularity
at the fiber corner, due to fiber/matrix modulus
mismatch and/or CTE mismatch, makes it cum-
bersome, as can be seen in Fig. 3. The figure
shows axial stresses at the fiber corner as a func-
tion of mesh size (/4=element length at the fiber
tip) in Al/SiC for the mechanical loading and the
thermal loading, respectively. As can be seen in
Fig. 3, convergence is not obtained. Consequent-
ly, some other local quantities such as interfacial
values near the apex would be another choice.

In FEA, component stresses are calculated for
each element at its integration points (or Gauss
points). The stress values are then extrapolated to
the nearest node using element shape functions,

—C—  MECHANICAL LOADING
=—{— THERMAL LOADING

M

o
-250 | Mﬂ.\
-Sm At a3 paaal 1 gl P

1 10 100
Characterlstic Length (L/h)

1000

Fig. 3 Axial stresses at the apex of the fiber as a
function of mesh size for the mechanical and
thermal loading.
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resulting in a nodal component stress for that
node due to that element. At a node shared by
two elements, therefore, we have two nodal stress
values, one from each element. In general, the
nodal stresses in the entire model are averaged by
the stress contributions from all elements shared
by a particular node.

This averaging scheme is acceptable in most
cases, but there are some instances where the
scheme becomes quite inappropriate, as disconti-
nuities in element stiffness. In this case, stress
averaging does not make sense at nodes shared by
elements with different material properties or
different geometric properties. In such case, the
calculation processed by elements of the same
material or geometric property individually can
be a good choice. Therefore, geometric or mate-
rial mismatch at the interface can be evaluated. In
this study, this mismatch scheme has been em-
ployed and evaluated in detail. Accordingly, the
traction difference across the fiber/matrix inter-
face as can be seen in Eq. {33) is used to ensure
mesh convergence because the traction must be
compatible at interface.

ATw=Ti— T3

In other words, the traction of fiber 77 has to

(33)
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be compatible with that of matrix 7," at the
interfactal node 3. Therefore, the traction differ-
ential 4T, (see Eq. (33)) at interface should tend
to zero as DOF increases.

6. Finite Element Mesh Refinement
Strategy

Stress contour results of mechanical loading are
shown in Figs. 4(a) and (b) for axial and radial
components, respectively. In the same fashion. the
results of thermal loading are shown in Figs. 5(a)
and (b) for axial and radial components, respec-
tively. As shown in these figures, significant ther-
mal stresses can develop in a short fiber reinfor-
ced composite due to CTE mismatch. Further-
more, the thermal axial stress contours vary in the
similar manner functionally as those obtained in
the mechanical loading. In all cases, it is clear
that high local stress gradient regions are near the
fiber/matrix interface. Far from the fiber/matrix
interface, stresses are fairly uniform. Therefore,
the interface region must be discretized as finely
as possible so as to achieve convergence efficient-
ly.

The standard h-based mesh discretization pro-

=100.917
=135.838
=170.758
=205.679
=240.599

=275.52

=310.44

!
HONOQMEB OO ™

=345.361

6L 8LE

=~43,636

=~3].456
=~19.276

=~T7.097
=5.083

=17.263
=29.442
=41.622

Fig. 4 Stress contours in SI unit (MPa) for mechanical loading (£,=0.1%): (a) Axial stresses, (b) Radial

Stresses.
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Fig. 5 Stress contours in SI unit (MPa) for thermal loading (47 = —100K): {a) Axial stresses, (b) Radial

stresses.

cedure involves mesh refinement with unit or near-
unit element aspect ratios. Fig. 6(a) shows the
regular element (RE) type uniform mesh pattern
generated by the ANSYS (Konke, 1989) auto-
matic free mesh generator and Fig. 6(b) shows
the elongated element (EE) type mesh pattern.
The use of these EE type meshes near the fiber/
matrix interface substantially reduces the DOF.
Note that the refinement of the EE type mesh is
extended to the cell boundaries in both the axial
and radial directions. This was done for two
reasons: firstly, it simplifies greatly mesh genera-
tion, and secondly, a close examination of stress
analysis results reveals significant stress gradients
in these extended regions compared to the uni-
form mesh region.

7. Results and Discussion

7.1 Global convergence

The error in the energy norm was evaluated
separately for each material as describes above.
The global error energy norms used by RE and
EE meshes for mechanical loading are shown in
Figs. 7(a) and (b), respectively. It is clear that
energy norm of the error drops quickly and con-

Fig. 6 Typical mesh patterns discretized by (a) a
unit or near unit element aspect ratio (RE),
(b) an elongated element aspect ratio near
the fiber/matrix interface (EE), respectively.
M indicates matrix and F indicates Fiber.

verges to a small but finite error in the energy
norm as shown in Fig. 7. For the case of the RE
based meshes, the limiting values with about 2500
DOFs are approximately 3% and 5% for the fiber
and matrix, respectively. However, for the EE
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Fig. 7 Results of global convergence computed by

error energy norm approach for the mechani-
cal loading: (a) Convergence for RE type
meshes. (b) Convergence for EE type meshes.

based meshes, the global error energy norms
converge to approximately 4% and 6% for the
fiber and matrix, respectively when DOF is 1178
which is a functionally similar result compared to
that of RE meshes. Figures 8(a) and (b) show
the error energy norms for the case of thermal
loading. For both RE and EE based meshes, as
can be seen in Figs. 7 and 8, the tendency between
the mechanical loading and the thermal loading
does not show significant differences.

Although the EE based meshes converge to a
functionally similar error in the energy norm to
the RE based meshes, the convergence rate for the
EE meshes is much faster than for the RE based
mesh in both mechanical loading and thermal
loading cases. For example, the asymptotic 5%
error in energy norm in the fiber is achieved for
the EE based meshes with only 500 DOF, whereas
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Fig. 8 Results of global convergence computed by

error energy norm approach for the thermal
loading: (a) Convergence for RE type
meshes, (b) Convergence for EE type meshes.

approximately 1000 DOF are needed for the RE
based mesh to obtain a similar global percent
error in energy norm of the fiber for both mechan-
ical and thermal loading cases.

This result is expected since for the same num-
ber of DOF, the characteristic element size at and
near the interface for the RE type mesh is much
larger than that of the EE type mesh. Note that
the lack of stress gradients in the fiber direction at
the fiber/matrix interface implies that the charac-
teristic element length of the EE elements is given
by the element length in the direction perpendicu-
lar to the fiber. Thus, comparable accuracy can be
achieved using significantly fewer, high aspect
ratio EE elements which have the same character-
istic element length as an RE mesh. However, as
the aspect ratio of the EE elements increases, the
stiffness matrix becomes increasingly ill-condi-
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tioned (Cook et al., 1989) which introduces
numerical error in the solution phase. This is
reflected by the higher converged percent error in
global energy norm for the EE meshes.

Generally, 1t is expected that the error as
measured by the global error energy norm will
converge to zero as the mesh is refined. However,
in the discontinuous composite system, stress
singularities exist at the fiber/matrix corners
which significantly reduce the convergence rate in
the global energy norm of the stress error for
h-based mesh refinement. Thus, it is unrealistic to
demand convergence of the global energy norm to
an arbitrary small value for problems involving
stress singularities.

7.2 Local convergence

A more dramatic difference between the EE
and RE mesh cases can be seen in the local
convergence results. For assessing local conver-
gence two points at the interface near the singular-
ity are chosen. One is taken as the near point in
the r direction (Point P in Fig. 6(a)) and the
other is taken as the near point in the z direction
(Point Q in Fig. 6(a)). Then, the normal traction
was calculated in each material. The results for
mechanical loading are shown in Figs. 9(a) and
(b) which reveal a considerably more rapid con-
vergence for the traction compatibility to the EE
mesh when compared to the RE mesh case.
Thermal loading results are shown in Figs. 10(a)
and (b), which also give similar rapid conver-
gence. Accordingly, it is clear that elongated
meshes at the fiber/matrix interface yield substan-
tially superior convergence in a local sense. Note
that while this simple mesh refinement scheme
results in elongated elements at the fiber/matrix
interface away from the singularity corner, nearly
square elements are generated in the vicinity of
the singularity corner.

It is important to realize that convergence to
the exact solution at each and every point in the
domain is never guaranteed in the FEA. Conver-
gence theorems, such as the fundamental conver-
gence theorem, are only able to ensure conver-
gence to the exact solution in the global energy
sense (Strang and Fix, 1973). Thus, it is theoreti-

cally possible for the solution to converge to the
exact solutions as measured by the global energy
error norm, but it may fail to converge to the
exact solution at each and every point in the
domain. Nevertheless, it has been noted that for
physically well-posed problems, pointwise con-
vergence does occur if the solution converges in
the global energy (Burnett, 1988) which is well
documented in the literature (Burnett, 1988, Cook
et al, 1989, Kelly er al, 1983, Zhu and Zinki-
ewicz, 1990). A common misconception is that
this superconvergent effect of the pointwise error
implies that the relative pointwise error is bound-
ed by the relative error in the energy norm. In
general, the convergence rate in the pointwise
error exceeds the convergence rate in the energy
norm, but no definitive correlation of the relative
pointwise errors to the relative error in energy
norm has been offered. Furthermore, the standard
convergence theorems in the literature are based
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Fig. 9 Results of local convergence computed by
traction differential approach for the mechan-
ical loading: (a) Radial stress at point P, (b)

Axial stress at point Q.
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Fig. 10 Results of local convergence computed by
traction differential approach for the thermal
loading: (a) Radial stress at point P, (b)
Axial stress at point Q.

on the assumption that the exact solution is
“sufficiently smooth” and bounded, and are there-
fore not strictly applicable to problems in which
theoretical singularities exist. [t would seem that
for such problems, local convergence at points
near the singularity can be achieved despite a lack
of complete convergence in the global error
energy norm due to the singularity. Figures 9 and
10 demonstrate convergence of the traction at
specific points for the EE based mesh which
imply a significantly smaller relative error in the
traction than the 5-6% global error energy norm
of Figs. 7(b) and 8(b). The implication is that
the global error in energy norm alone is not a
sufficient measure of solution convergence. A
combination of both global and local error esti-
mates is desirable, especially for problems which
admit singularities

Figures 11(a) and (b) show the differential of
normal traction as a function of logarithmic DOF

DOF
(a)
140
g AE (P)
g 120 EEP)
50 RE{@)
P owl 2
‘."g 60
£ 4i}
g
‘: 1}
100 10000

Fig. 11 Results of local convergence computed by
traction differential approach as 4 function of
logarithmic DOF for the axial stress at point
Q. : (a) mechanical loading, (b) thermal
loading.

the in case of the mechanical and thermal axial

loading, respectively. The results show a consider-

ably more rapid convergence for the traction
compatibility to the EE mesh when compared to
the RE mesh case.

Figures 12(a) and (b) show the logarithmic
differential of normal traction as a function of
“logarithmic characteristic element length (nor-
malized by a physical length), 7./}" in the case of
the mechanical and thermal axial loading, respec-
tively. Here, characteristic element length repre-
sents a normalized value of the RVE length in
axial direction by the element length. The results
show again a considerably more rapid conver-
gence for the traction compatibility to the EE
mesh when compared to the RE mesh case,

Hence, it is found why EE meshes are better
than RE meshes for convergence. An important
implication of the FE preprocessing having singu-
larities points out that the key role to obtain the
computational efficiency is shortening characteris-
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tic element length as shown by the comparison of
Figs. 9 and 10 with Figs. |1 and 12. As a result.
Figs. 9 and 10 demonstrate the strong statement
for computational efficiency while Figs. 11 and 12
demonstrate that there is nothing really magical
about the results.

8. Conclusions

A procedure based on the calculation of a new
approach using traction differentials at the fiber/
matrix interface to ensure global and local con-
vergence hus been proposed. The mesh refinement
strategy is intended to the /i-based generalized
approach using the irregular element at the fiber/
matrix interface, which yields significantly differ-
ent patterns compared to the regular mesh pat-
terns. This difference has a critical bearing on the
analysis and design implementing FEA. On the
strategy, global and local error estimation tech-
niques with a simple %-based mesh refinement are

suggested based on map mesh generation tech-
niques for the application to discontinuous, or
short fiber reinforced composite materials. The
global error estimation technique is based on the
total error in the energy norm, calculated sepa-
rately for each material, and the local error esti-
mation method is based on the fiber/matrix inter-
facial traction compatibility criterion. Results
show that the
approach offers a superior convergence rate when
compared to ji~based
meshes with near unity aspect ratio elements over

proposed mesh refinement

automatically refined
this problem domain. This method is also simple
to be programmed in an automatic map mesh
generator and can lead to results with a high
degree of accuracy with a minimum DOF mesh.
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