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A Study on the Finite Element Preprocessing for the Analysis and 
Design with Discontinuous Composites 

Hong Gun Kim* 
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A strategy of finite element (FE) preprocessing of  d iscont inuous fiber or whisker reinlbrced 

composite materials for mechanical analysis and design has been treated in this paper. The 

procedures were based on the calculation of the error in energy norm for global convergence and 

the traction differential approach at the f iber/matr ix interface for local convergence. The mesh 

refinement strategy was intended to the k-based generalized approach using the elongated 

element at the f iber/matrix interface, which yields significantly different patterns from those 

obtained by convent ional  mesh refinement procedures. This difl'erence may have a critical 

bearing on the subsequent thermo-mechanical  properties predicted by the finite element analysis 

( F E A ) .  It was found that the FE mesh design of adequate element aspect ratio at the f iber /  

matrix interface results in a much more rapid computa t ional  convergence rate than that obtained 

by the convent ional  approach. 

Key Words : Error Energy Norm, Global  Convergence. Local Convergence, k-Vers ion,  

p Version, Element Aspect Ratio, a posteriori Error Estimates, Discont inuous 

Composite Material, C" Continui ty ,  L2 Norm 

Nomenealture 
zt: zt(r, z) : Radial displacement 

zc:: wO. z) : Axial displacement 

s : Strain 

o" : Stress 

o, : Coefficient of thermal expansion 

f : Body force ~,- 

N : Residual 0 

j \ , '  : Weighting function 

_(2 : Domain  >~, 

F : Boundary f 

IK] : Stiffness matrix i 

r. 13] : Stra in-displacement  matrix 

iD]  ; Stress strain matrix 

{F} : Force vector 

{d} : Displacement vector ~ 

M " Number  of" elements n 

{ ~*},, : Smoothed stress vector at node ~ 

{~},~ : Unaveraged stress vector at node n 
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(7*}n 

E 

T 

: Improved stress vector at node ~z 

: Energy norm 

: Normalized percent error 

: Tract ion 

Subscripts  

: Radial direction 

: Hoop direction 

�9 Axial direction 

: Matrix 

: Fiber 

: Node 

Superscripts  

: Element component  

�9 Unit  outward normal to die bound-  

ary 

I. I n t r o d u c t i o n  

The finite element analysis (FEA)  ofli~rs a 
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rigorous and versatile approach in the composite 

analysis and design. While FEA usually gives a 

good result, the application of FEA to composite 

requires careful attention to the geometry of the 

optimum mesh refinement. Intrinsically, FEA 

involves the geometric and mathematical discret- 

ization of a continuum into a FE mesh which is 

reflected by a discretization error in the analysis. 

Hence, a posteriori error estimations (Strang and 

Fix, 1973) for the FEA solution have become 

very essential and are currently an active research 

area. These a posteriori error estimates are then 

taken as a basis for adaptively refining the mesh. 

The meshes can be locally refined based on local 

error determinators, uniformally refined based on 

a global measure of the discretization error, or 

refined by a combination of local and global 

error measures. 

Babuska and Rheinboldt (1978) have offered 

mathematically more rigorous, residual-based 

approaches to error analysis. They derived error 

bounds for the energy norm of the error based on 

the residual of the differential equation. Element 

error indicators were introduced as a means of 

determining which elements must be refined. 

Mesh optimality is based on achieving uniform 

error distribution for all elements. Subsequent 

work continued to develop residual-based error 

estimators and associated adaptive mesh refine- 

ment schemes (Babuska and Miller, 1984, Rhein- 

boldt, 1985). 

Other residual-based methods include the work 

of Kelly et al. (1983). In an attempt to reduce the 

computational burden involved in residual based 

error estimates, the authors proposed the use of 

special hierarchical shape functions. The hierar- 

chical shape functions essentially permit efficient 

p-based error estimates. However, a common 

fundamental problem of all residual based 

methods has been the difficulty of correlating the 

residual, as measured by an integral norm, to the 

pointwise error in either the primary displace- 

ment variable or its derivatives, such as strains 

and stresses. 

On the other hand, Zienkiewicz and Zhu 

(1987) have derived a new stress-based error 

estimator and associated adaptivity algorithm. 

This method (hereafter referred to as the ZZ 

method) involved obtaining a global least 

squares fit of the discontinuous (C -1 continuous) 

FE stress field with a C o continuous stress field. 

The latter stress field is taken as an approxima- 

tion to the true stress field, and the difference 

between the two tensor fields, as measured by the 

energy or L2 norm, represents an estimate of the 

discretization error. The authors invoke the 

asymptotic convergence rate of displacement- 

based finite elements to correlate the norm of the 

error in the element stress field to the FE size, 

thereby deriving an adaptive element sizing func- 

tion for the new mesh. 

Ainsworth et al. (1989) have shown that the 

ZZ error estimator is effective and asymptotically 

exact provided that the exact stress boundary 

conditions are imposed on the higher other stress 

field. However, imposition of exact stress bound- 

ary conditions for general multi-dimensional 

problems, while straightforward, involves addi- 

tional computations. Cauchy  stress components 

must be transformed to boundary based normal/  

tangential coordinate systems for all boundary 

elements. Moreover, the order of the system of 

equations generated by the least squares fit prob- 

lem is, in general, larger than the original FE 

system of equations. Thus, the algorithm is 

computationally intensive, unless the coefficient 

matrix for the least squares fit problem is 

diagonalized as recommended by Zienkiewicz 

and Zhu ([987). The effect of this diagonaliza- 

tion or lumping of the coefficient matrix on the 

effectiveness, accuracy and convergence properties 

of the algorithm was not explored by Ainsworth 

et al. (1989). 

On the other hand, Ohtsubo and Kitamura 

(1990) put forward a method by which an ele- 

ment by element error analysis can be carried 

out using an isoparametric element having an 

interpolation function one order higher than the 

original element and imposing self-equilibrium 

conditions in individual elements. Zhu and Zien- 

kiewiez (1990) also showed that error estimations 

based on higher order approximations of the 

gradient field can be directly related to the resid- 

ual-based error estimator proposed and analysed 
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by Babuska and Rheinboldt (1978). 

Recently, Grosse et al. (1992) proposed a new 

a posteriori FE error estimator based on yon 

Mises or effective stress function and on a new 

concept of mesh optimality, tn their study, the 

discretization error is estimated by the L2 norm of 

the difference between FE yon Mises stress func- 

tion and an improved "smoothed" von Mises 

stress function. The element error measure is 

shown to have a distortional energy interpreta- 

tion. The mesh adaptivity algorithm is based on 

imposing a nonuniform distribution of allowable 

error, as measured by the element's L2 error 

norm, based on the element's stress state. In this 

manner, the desired solution accuracy in the mesh 

is permitted to vary according to the relative stress 

distribution with the highest solution accuracy 

required in the highest stressed regions and the 

minimum solution accuracy required in the 

lowest stressed regions. 

The above procedures have yet to be general- 

ized and extended to the case of fiber or whisker 

reinforced "non-homogeneous" composite mate- 

rials. [n discontinuous composite systems, 

because the stress field is highly sensitive to the 

geometry of fiber and cel l  i. e. fiber and/or  cell 

aspect ratio, the mesh geometry is critical. In such 

composites, it is presented that FE meshes of the 

appropriately elongated elements are desirable 

near the fiber/matrix interface unless element 

aspect ratios are too large. In this case, the auto- 

matic free mesh generation shows some difficulty 

when combining the Regular Element (RE) far 

from the fiber/matrix interface, which has a near- 

ly uniform element aspect ratio, with highly 

Elongated Element (EE) at the fiber/matrix 

interface having fairly large element aspect ratio. 

Most of previous FE error estimation studies used 

the local error energy norm for computing the 

local error. However, short fiber or whisker rein- 

forced composites usually have sharp corners at 

the inter-material boundary that can produce a 

singularity and a lack of C o continuity across 

fiber/matrix interface (Needleman and Nutt, 

1986 ; Nutt and Duva, 1987). Again, this method 

has limitations for short fiber or whisker reinfor- 

ced composites. Thus far, it is needed to establish 

a new local error parameter that provides an 

optimal convergence condition. 

In this paper, a mesh refinement procedure is 

presented using a new local error parameter for a 

discontinuous fiber reinforced composite. It 

includes the previous global error energy norm 

parameters as well as a new local error parameter 

based on a normal traction discominuity. The 

error criteria based on energy have been evaluat- 

ed in the fiber and matrix separately for a global 

convergence because C" continuity invalidates 

this energy approach in the fiber/matrix interface 

region. A normal traction differential approach 

was applied at the interracial nodes in order to 

predict the local near-interface mesh quality. It 

was found that appropriately high element aspect 

ratios near the fiber/matrix interface are very 

efficient for modeling with the h-based FE mesh 

refinement in discontinuous fiber or whisker rein- 

forced composites. Furthermore, this phenome- 

non was also explained by the concept of "charac- 

teristic element length" depicted by logarithmic 

plotting and it demonstrates that there is nothing 

really magical. 

2. Governing Equations and FE 
Formulations 

The governing equations and the Galerkin 

FEA formulations for the axisymmetric linear 

isotropic elasticity used here are presented in this 

section. Note that. although on a macroscopic 

level short fiber composites are anisotropic mate- 

rial at this micromechanical mode:l, we can 

assume isotropic material behavior for the fiber 

itself and fbr the matrix itself. 

Let u - - u ( r ,  z) and ~c--zv(r,  z) represent 

the radial and axial (fiber direction) components 

of the displacement field, respectively. The strain- 

displacement relationships in linear axisymmetric 

elasticity are : 

c)Y 

& '  a,- 
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where ~0 is the hoop strain. The constitutive 

relations for isotropic axisymmetric elasticity with 

initial strains are 

where 

{o'}= -: [D] eo 
8"z 

-{eo}) (2) 

E 
LD]  . . . . . . . . . . . . . .  

I 
i - ~  ,./ ~ 0 

> 1--> ~ 0 
(l+p)(1-2v) ~ ~ 1 >' 0 

1 
9' W k' ~ - - k  

(3) 

and the thermally-induced initial strain tensor, as 

is the case here, has the form 

l<r[ 
{eo} ce A T  eo (4) 

F] 
where az is the material coefficient of thermal 

expansion (CTE) and A T  is the temperature 

change of the material relative to the strain-free 

reference temperature. 

Finally, we have the differential equilibrium 

conditions for axisymmetric elasticity as l~)llm~,s : 

c~r,,-+ 1 (a~--ae) F r .... -F/~=O 

(~,~+ r,~:,, ,4- 1 r,-~ t /~ 0 
(r, z ) r  (5) 

where f~ and f~ are body forces. The boundary 

equilibrium conditions are 

rT"l r - ~  ~'rz 7 ~ r l 
rrz'~,-+#f~z~ h f  t r ,  z) on f (6) 

where n is the unit outward normal to the bound- 

ary I" and ~'z'r and hr z are the externally applied r 

and z traction components to the boundary /7. 

In the weak Galerkin FE formulation, residual 

functions exist for lack of satisfaction of the 

domain and boundary equilibrium equations : 

1 
j a,.,,.+-~. ( a , . -  ao) + v,~,~4/~/ 

K 

(7) 

{t; (8) 

The weighted residual statement enforces these 

error functions to be zero in a weighted integral 

sense over the domain and on the boundary F : 

( i - - l ,  2, ..., N) (9) 

Here, A: is the total number of nodes and N, is the 

weighting function associated with node i. The 

weighting function N, is given by a piecewise 

combinat ion of the element interpolat ing 

polynomials associated with node i used to inter- 

polate the element displacement field fi'om un- 

known nodal displacements. For this reason, it is 

more convenient to express Eq. (9) at the element 

level: 

N, .e =0,  
e = l k J l ' e  Js 

2, " ' ,  N} (10) i = 1 ,  

where element e, and the summation sign implies 

the proper assembly of element degrees of free- 

dom (DOF) into the system equations. For 

axisymmetric elements, one has 

dl ' 2 m'ds ( 11 ) 

(/22 = 2 m'drdz  (12) 

Here. (Is is the differential path coordinate 

around the element boundary. Substituting Eqs. 

(7), (8). (11) and (12) into Eq. (10), and using 

the divergence theorem to integrate by parts, the 

higher order terms yield 

N,{i:},** 

0 N /  A,[, J[ r<; 

i = l ,  2, -", N ~} (13) 

The element displacement field is interpolated 
from nodal values using the element interpolation 
polynomials N [ :  

{ u ~ I N /  0 ". N~(:~, 0 ] 
w e L 0 Nf  "-- 0 A:~ 
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uf ] 

Z~i'f" ]/= [N~] { de} (14) 
/ 

zt}~[ 

Equations (1), (2) and (14) are combined to 

relate the stress tensor to nodal displacements and 

substituted into the righthand side of Eq. (13) to 

obtain the following FE equations for linear 

axisymmetric isotropic elasticity with initial 

strains : 

[ i [ ~ e ] { d e } - - { l ~ ' } + { I ~ f f } - } - { I ~ ; "  } ( ]5)  

where 

= f ~  [B  e] TEl)el I13 e] rdrdz  (16) [Kel 

{Fe} f.  [ N e ] v { k r e } F d ,  s " (17) 

- f~ ,  ~Nq q/~},-drdz (i s) {~7} 

{/~}---f,, [13~]"[E~]ledrdrdz (I9) 

and 

[ N~,. 0 ... N~<~,~ 0 

~/3e I J( l r )N~,-  0 --  (+).,%~,,- 0 (20) 

, J \  Ne,z 0 Hi% "'" 0 ' ;" 
T':' , e ~<, 

�9  j~f N e,z Aq% A,,,. ,. N,.,,. 

The element stiffness matrices and element load 

vectors are assembled into the system equations. 

Kinematic boundary conditions are imposed and 

the equations are factored and solved for nodal 

displacements. Element strains and stresses are 

then recovered via Eqs. (1), (2) and (14). 

3. Description of Geometry, Material 
and Loading Condition 

The application of FEA to composites requires 

careful attention to the geometry of the mesh used 

in analysis and design�9 In a discontinuous fiber 

reinforced composite, fiber interaction effects 

must be important for understanding the deforma- 

tion evolution in the matrix as well as the overall 

composite stress-strain behavior except in very 

low fiber volume fraction cases (Agarwat et aL, 

, IIII,,, liIT~ 

(a) 

~] Matrix 
\ j  i-. ,, -IT i 

I~ 2L- -I 

(b/ 

Fig t (a) 2 - D  mu}1I i - f iber  mode l  f o r  aligned f i be r  

geometry, (b) Composite RVE containing a 
single fiber in a cylindrical matrix volume. 

1974 and Christman et al., 1989). A 2 D multiple 

fiber model used to develop the physical concepts 

is shown in Fig. I (a) for the aligned fiber geome- 

try. 
On the other hand, an axisymmetric single fiber 

model corresponding to a 3 D model for the 

aligned geometry and fiber/fiber interactions can 

be accounted for by use of cell boundary con- 

straining conditions. In this study, an axisym- 

metric single fiber representative vohtme element 

(RVE) which qualitatively and quantitatively 

provides the equivalent results as the 3 D model 

was employed as shown in I-'ig. 1 (b). -Vhe RVE is 

treated as concentric cylinders with diameter D 

and length 2L as shown in Fig. 1 (b). The spatial 

variable for the axial (mechanical loading) direc- 

tion is z with the coordinate origin at the fiber 

center, whereas the spatial variable for the radial 

direction is r .  For an FE mesh generalEion, conse- 

quently, a quarter of RVE is needed to analyse 

due to axisymmetry. FE computations were per- 

formed using four noded isoparametric elements. 

The schematic domain of the composite and the 

decomposed fiber and matrix is shown in Fig. 2 

(a) and (b), respecti\ely. 

Material properties selected are for AI 2124 as 

matrix and SiC whisker as reinforcement. For this 

system, values used are E,,~- 70GPa, u,,=0.33 
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Fig. 2 

l . ~ . S  Qc . 

l / 
! : i : : : : ! : : : : : : : : : : : 

(a) 

A' t / - ~ 1 7 6  , 
- + [ . . . . . . . . . . . . .  1;i:i;i:;;i:i:;i!iii 

and am--2.36• 5/K for matrix and Es-- 
480GPa, Es 0.17and > r=4 .3 •  6/K for rein- 

forcement (Taya and Arsenalut, 1989, Kim, 1992, 

Kim, 1994). Here E is Young's modulus, u is 

Poisson's ratio and is the CTE. The fiber and 

matrix materials are assumed to be isotropic, and 

the elastic constants and CTE values are assumed 

to be temperature independent. The fiber volume 

fraction Vs is used as 1/i=0.2 and the fiber aspect 

ratio s is used as s = 4  corresponding to that 

observed for SiC whiskers in A1 alloys (Ar- 

senault and Shi, 1986, Nair and Kim, 1991). Here, 

fiber volume fraction is not a sensitive factor or 

function in this study. It was only applied to the 

case of widely used 1/1---0.2. The fiber/matrix 

bond is assumed to be large enough such that no 

debonding is allowed in keeping with the actual 

situation in many metal matrix composites (Nair 

et al., 1985, Kim, 1994). Therefore, slip at the 

fiber/matrix interface is not allowed in this 

model. Further, no plastic yielding is allowed, 

that is, both matrix and fiber deform in a purely 

elastic manner. 

Two cases are evaluated for loading conditions 

with the same geometry : mechanical loading and 

thermal loading due to mismatch of CTE between 

the fiber and matrix. For mechanical loading, a 

uniform constant composite strain ~.=0.1% is 

applied on the z = L  surface of the RVE. For 

thermal loading, a uniform temperature difference 

of z / T = - 1 0 0 K  as a result of a temperature 

(b) 

L 
v 

A schematic of composite domain and the fiber/matrix decomposition process (a) composite domain, 
(b) decomposed fiber and matrix domains. 

change (cooling) is applied. Detailed boundary 

conditions for mechanical and thermal loading 

are given by Kim (1992). 

4. Global Error Estimation 

The convergence study, also called the mesh 

refinement study, is an important and necessary 

step in FEA. This step, which estimates the 

discretization error in the solution, is necessary 

because FE solutions are only numerical approxi- 

mations. In this section, global error energy as 

well as local tractions are introduced for the fiber 

and matrix, respectively. The error approximation 

technique used here is similar to that given by 

Zinkiewicz & Zhu (1987). The key difference is 

that continuous stresses are generated directly by 

averaging nodal stresses, whereas they impose a 

weighted residual quality on the stress error esti- 

mate. 

In the displacement based FE formulations for 

stress deformation analysis of solids, the displace- 

ment field from element is continuous since C ~ 

continuity field is assumed. However, the FE 

stress field, {o} is generally discontinuous across 

inter-element boundaries (Cook et al., 1989). To 

obtain an improved estimate of the stresses, aver- 

aging of the element nodal stresses was employed 

in this work, i. e., 

{ 6*}n = ~ Y ] ,  {~},~ (21) 
I~ e = I  
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where { 8 " } .  is the smoo thed  stress vec to r  at 

node n, e is the element number  sharing node n, 

K is the total number  of  elements sharing node n, 

{~-}~ is the unaveraged stress vector at node n for 

an element e. Then, the improved stress field in 

each element e is obtained by interpolat ing the 

averaged nodel stress vector {8*}n using the 

standard FE interpolat ing polynomials  (i. e. 

shape functions) [Ne l  : 

{es*} ~ -  INeT{ n * }  e (22) 

where {o'*}n is the improved stress vector at node 

n. An estimated stress error vector function for the 
element e is given by 

cg-= { d*) ~ - { _6"} e (23) 

The energy norm of  the element stress vector, H eJ  I1 
is given by 

II eDl l=f  {e~IEe<7 '(e~idV' (24) 

where [Del is the element stress-strain matrix. 

This measure of  the error  is sometimes referred to 

as the energy error norm. 

The energy norm of  the stress error over  the 

entire model  for the fiber or for the matrix is 

given by the square root of  the sum of  the square 

of  the individual  element energy error norms : 

where M is the number  of  elements and subscript 

f and m represent fiber and matrix, respectively. 

The energy norms of  the stress error for the fiber 

and matrix material  regions are normalized by the 

energy norm of  the exact stress field for the fiber 

and matrix regions. The exact energy norms are 

estimated from the approximate  stress solutions in 

the fo l lowing manner  : 

Ell ~ list ~= Eli a Ib.]~+ Eli ~ IIA ~ (27) 
[11 <s 11,.3 ~= [11 a I1,.3~+ [-II e~ I1,.7 ~ (28) 

where e f and II e~ II, and It ~ lira are given by Eqs. 
(25) and (26). Thus, 

Eli a IIA ~= ~ Ell a ~ I1,3 ~ (29) 
e=l 
Mm 

Elf a Ilm]~=~, Eli a e 1l,.7 ~ (30) 

Accordingly,  normal ized percent errors in the 

energy norm of  the error  for fiber and matrix are 

given by 

loo ( II e~ I1.. '~ (31) 
u , :  t W/ 
E,~: 1 0 0 ( ~ l [ ~ -  ) (32) 

Appl ica t ion  of  the global  energy ,error norm 

approach to the fiber reinforced composi te  mate- 

rial is accomplished by calculat ing separately the 

global  energy norm for fiber and matrix as in Eqs. 

(31) and (32). This is because, as previously 

mentioned,  C ~ continuity in the complete  stress 

vector does not exist at the f iber /matr ix  interface. 

5. L o c a l  E r r o r  E s t i m a t i o n  

Al though  the maximum stress is often used for 

local convergence,  the presence of  the singulari ty 

at the fiber corner,  due to fiber/matrJix modulus  

mismatch a n d / o r  C T E  mismatch, makes it cum- 

bersome, as can be seen in Fig. 3. The figure 

shows axial stresses at the fiber cornel" as a func- 

tion of  mesh size ( k = e l e m e n t  length at the fiber 

tip) in A1/SiC for the mechanical  loading and the 

thermal loading, respectively. As can be seen in 

Fig. 3, convergence is not obtained.  Consequent-  

ly, some other local quantit ies such as interracial 

values near the apex would  be another  choice. 

In FEA.  component  stresses are calculated for 

each element at its integration points (or Gauss 

points) .  The stress values are then extrapolated to 

the nearest node using element shape functions, 

750 

5OO 

250 

o 

,~ -250 

-500 

Fig. 3 

 Ee ,cAL 1OAO,  
THERMAL LOADING ] 

. . . . . . . .  i . . . . . . . .  | . . . . . . . .  

10 too too0 
Characteristic Length (L/h) 

Axial stresses at the apex of the fiber as a 
function of mesh size tbr the mechanical and 
thermal loading. 
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resulting in a nodal  component  stress for that 

node due to that element. At a node shared by 

two elements, therefore, we have two nodal stress 

values, one from each element. In general, the 

nodal  stresses in the entire model  are averaged by 

the stress contr ibut ions from all elements shared 

by a part icular  node. 

This averaging scheme is acceptable in most 

cases, but there are some instances where the 

scheme becomes quite inappropriate,  as disconti- 

nuities in element  stiffness. In this case, stress 

averaging does not make sense at nodes shared by 

elements with different material properties or 

different geometric properties. In such case, the 

calculat ion processed by elements of  the same 

material or geometric property individual ly can 

be a good choice. Therefore,  geometric or mate- 

rial mismatch at the interface can be evaluated. In 

this study, this mismatch scheme has been em- 

ployed and evaluated in detail. Accordingly,  the 

traction difference across the f iber /matr ix  inter- 

face as can be seen in Eq. (33) is used to ensure 

mesh convergence because the traction must be 

compat ible  at interface. 

AT,~ T /  T,;" (33) 

In other  words, the traction of  fiber T~f has to 

Gun Kim 

be compat ible  with that of  matrix T I '  at the 

interracial node n. Therefore,  the traction differ- 

ential ~/T,, (see Eq. (33)) at interface should tend 

to zero as D O F  increases. 

6. Finite Element Mesh Refinement 
Strategy 

Stress contour  results of  mechanical  loading are 

shown in Figs. 4(a) and (b) for axial and radial 

components ,  respectively. In the same fashion, the 

results of  thermal loading are shown in Figs. 5 (a) 

and (b) for axial and radial components ,  respec- 

tively. As shown in these figures, significant ther- 

mal stresses can develop in a short fiber reinfor- 

ced composi te  due to C T E  mismatch. Further-  

more, the thermal axial stress contours vary in the 

similar manner  functionally as those obtained in 

the mechanical  loading, in all cases, it is clear 

that high local stress gradient regions are near the 

f iber /matr ix  interface. Far from the f iber /matr ix  

interface, stresses are fairly uniform. Therefore,  

the interface region must be discretized as finely 

as possible so as to achieve convergence efficient- 

ly. 

The standard h-based mesh discretization pro- 

r . . . . . . . .  i 

~ . . ~ - ~  ~ 2 ~ - ' - ~ ( ~  ~ _ ~ : :  : : = ~ .  -~-~ ~ ', , 

I . . . . . . . .  _,' 

(a) 

A .... 6&,996 
B =100.917 
C =135~838 
D =170.758 
E =205.679 
F =240.599 
G =275.52 
H =310.44 
I =345.361 

t--- 

I 
i 

i 
L__ 

. . . .  ) A ....... e~ . :5 ,81 .5  

C ==-31.456 
~ D =-19.276 

~!.--~ 9k g =-7.09V 
: ! i = 5 . 0 8 3  

r; /,,.~4 ~ I G =17.263 

I /1' L H = 2 9 . 4 4 2  
.... j I =41.622 

(b) 

Stress contours in SI unit (MPa) tbr mechanical loading (~c 0.1%): (a) Axial stresses, (b) Radial Fig. 4 
stresses. 
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Fig. 5 

~-- . ,  . . . .  - �9 - .  . . . . . . . . . . .  '-,,i i - - !  

------------------,.,-,--,----,----,,--,-~414-G4---I---L--i 
, i i , i i i i [o~ -  , , r / ~t.a~ ,i ,~14, / l 
I I ! 1 ] I | V II f / I  I , ', I ' I ,' " 1  ; I I I I 

/ l uaf ' H  ~ I 
, . . . . . . . . . . . . . .  , , _1 . . . . . . . .  _1__._l . . . . . . . .  , . 1 .  , 1 _ . _ 1  . . . . .  , ~ _ _ _ l _ _ _ n ,  , . . . . .  , L . _ _ I _ _ . !  . . . .  

(a) 

~- . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 2  . . . . . . . . . . . . . . . . . . . . . . . .  } . . . . . .  

- -I 

i : : i i i : ,?/~ I i ~ ,  ~rm,, 
' I I I * I'% I 'tO/ ' '~ ~: 

, . . . . . . . . . . . .  i - - !  . . . . . . . . . . . . . . . . .  ,- ,  . . . . . . . . . .  

(b) 

cedure  involves mesh ref inement  with unit  or nea r -  

unit  e lement  aspect ratios.  Fig. 6 (a )  shows the 

regular  e lement  (RE)  type uni form mesh pat tern  

genera ted  by the A N S Y S  (Konke ,  1989) auto-  

matic  free mesh genera to r  and  Fig. 6 (b )  shows 

the e longa ted  e lement  (EE)  type mesh pat tern.  

The  use of  these El5 type meshes near  the f ibe r /  

matr ix  interface subs tan t ia l ly  reduces the DOF.  

Note  tha t  the ref inement  of  the EE type mesh is 

ex tended to the cell b o u n d a r i e s  in bo th  the axial 

and radia l  direct ions.  This  was done  for two 

reasons:  firstly, it s implif ies great ly mesh genera-  

t ion,  and  secondly,  a close examina t i on  of  stress 

analysis  results reveals s ignif icant  stress gradients  

in these extended regions c o m p a r e d  to the uni- 

form mesh region. 

A ,:'-300 . 702 
B ~-252. 833 
C .... 204.964 
D =-157. 096 
E =-i09.227 
F =-61. 358 
G =-13.49 
H =34. 379 
I =82.248 

A ....... 15'7 , (; 3 '7 
B .... 128.369 
C ==-99.102 
D =-69.834 
E =-40.566 
F =-11.298 
G =17.97 
H =47.237 
I =76. 505 

Stress contours in SI unit (MPa) lbr thermal loading (',37" 100K): (a) Axial stresses, (b) Radial 
stresses. 
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7. R e s u l t s  a n d  D i s c u s s i o n  

7 . 1  G l o b a l  c o n v e r g e n c e  

The  er ror  in the energy norm was eva lua ted  

separate ly  fbr each material  as describes above.  

The  global  e r ror  energy norms  used by RE and  

EE meshes for mechanica l  load ing  are shown in 

Figs. 7 (a )  and  (b) .  respectively. It is c lear  that  

energy no rm of  the e r ror  d rops  quickly  and  con-  

...... - :  ............. 7.7:. .7.i :  ......... :-::::_: .............. : . 77 : . }  : : 

(b) 
Fig. 6 Typical mesh patterns discretized by (a) a 

unit or near unit element aspect ratio (RE),  
(b) an elongated element aspect ratio near 
the fiber/matrix interface (El!). respectively. 
M indicates matrix and F indicates Fiber. 

verges to a small  but  finite e r ror  in the energy 

no rm as shown  in Fig. 7. For  the case of  the RE 

based meshes, the l imi t ing values \~ith a b o u t  2500 

D O F s  are app rox ima te ly  3% and  5% for the fiber 

and  matrix,  respectively. However ,  for the EE 
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Results of global convergence computed by 
error energy norm approach for the mechani- 
cal loading: (a) Convergence for RE type 
meshes, (b) Convergence for EE type meshes. 

based meshes, the global error energy norms 

converge to approximately 4% and 6% for the 

fiber and matrix, respectively when DOF is 1178 

which is a functionally similar result compared to 

that of RE meshes, Figures 8(a) and (b) show 

the error energy norms for the case of thermal 

loading. For both RE and EE based meshes, as 

can be seen in Figs. 7 and 8, the tendency between 

the mechanical loading and the thermal loading 

does not show significant differences. 

Although the EE based meshes converge to a 

functionally similar error in the energy norm to 

the RE based meshes, the convergence rate for the 

EE meshes is much faster than for the RE based 

mesh in both mechanical loading and thermal 

loading cases. For example, the asymptotic 5% 

error in energy norm in the fiber is achieved for 

the EE based meshes with only 500 DOF, whereas 
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Results of global convergence computed by 
error energy norm approach for the thermal 
loading: (a) Convergence for RE type 
meshes, (b) Convergence for EE type meshes�9 

approximately 1000 DOF are needed for the RE 

based mesh to obtain a similar global percent 

error in energy norm of the fiber for both mechan- 

ical and thermal loading cases. 

This result is expected since for the same num- 

ber of DOF, the characteristic element size at and 

near the interface for the RE type mesh is much 

larger than that of the EE type mesh. Note that 

the lack of stress gradients in the fiber direction at 

the fiber/matrix interface implies that the charac- 

teristic element length of  the EE elements is given 

by the element length in the direction perpendicu- 

lar to the fiber. Thus, comparable accuracy can be 

achieved using significantly fewer, high aspect 

ratio EE elements which have the same character- 

istic element length as an RE mesh. However, as 

the aspect ratio of the EE elements increases, the 

stiffness matrix becomes increasingly ill-condi- 
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t ioned (Cook  et al., 1989) which introduces 

numerical  error in the solution phase. This is 

reflected by the higlaer converged percent error in 

global  energy norm fbr the EE meshes, 

Generally,  it is expected that the error as 

measured by the global  error energy norm will 

converge to zero as the mesh is refined. However ,  

in the discont inuous composi te  system, stress 

singularities exist at the f iber /matr ix  corners 

which significantly reduce the convergence rate in 

the global energy norm of the stress error for 

h based mesh refinement. Thus, it is unrealistic to 

demand convergence of  the global  energy norm to 

an arbitrary small value for problems involving 

stress singularities. 

7.2 Loca l  convergence  

A more dramatic  difference between the EE 

and RE mesh cases can be seen in the local 

convergence results. For  assessing local conver-  

gence two points at the interface near the singular- 

ity are chosen. One is taken as the near point in 

the r direction (Point  P in Fig. 6(a) )  and the 

other is taken as the near point in the z direction 

(Point  Q in Fig. 6 ( a ) ) .  Then, the normal traclion 

was calculated in each material. The results lbr 

mechanical  loading are shown in Figs. 9(a) and 

(b) which reveal a considerably more rapid con- 

vergence for the traction compatibi l i ty  to the EE 

mesh when compared to the RE mesh case. 

Thermal  loading results are shown in Figs. 10(a) 

and (b),  which also give similar rapid conver-  

gence. Accordingly,  it is clear that e longated 

meshes at the f iber /matr ix  interlace yield substan- 

tially superior  convergence in a local sense. Note 

that while this simple mesh refinement scheme 

results in elongated elements at the f iber /matr ix  

interface away from the singularity corner, nearly 

square elements are generated in the vicinity of  

the singularity c~rner, 

It is important  to realize that convergence to 

the exact solut ion at each and every point  in the 

domain  is never guaranteed in the FEA.  Conver-  

gence theorems, such as the f u n d a m e n t a l  conver- 

gence theorem, are only able to ensure conver-  

gence to the exact solution in the global  energy 

sense (Strang and Vix, 1973). Thus, it is theoreti- 

cally possible for the solut ion to converge to the 

exact solutions as measured by the global  energy 

error norm, but it may fail to converge to the 

exact solut ion at each and every point  in the 

domain.  Nevertheless, it has been noted that for 

physically wel l -posed problems, pointwise con- 

vergence does occur if the solut ion converges in 

the global  energy (Burnett, 1988) which is well 

documented in the literature (Burnett, 1988, Cook  

et al., 1989, Kelly et al., 1983, Zhu and Zinki-  

ewicz, 1990). A common  misconcept ion is that 

this superconvergent  effect of  the pointwise error 

implies that the relative pointwise error  is bound- 

ed by the relative error  in the energy norm. In 

general, the convergence rate in the pointwise 

error exceeds the convergence rate in the energy 

norm, but no definitive correlat ion of  the relative 

pointwise errors to the relative error in energy 

norm has been offered. Furthermore,  the standard 

convergence theorems in the literature are based 
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Results of local convergence computed by 
traction differential approach fbr the mechan- 
ical loading: (a) Radial stress at point P, (b) 
Axial stress at point Q. 
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Fig. 10 Results of local convergence computed by 
traction differential approach for the thermal 
loading: (a) Radial stress at point P, (b) 
Axial stress at point Q. 

on the assumption that the exact solution is 

"sufficiently smooth" and bounded, and are there- 

fore not strictly applicable to problems in which 

theoretical singularities exist. It would seem that 

for such problems, local convergence at points 

near the singularity can be achieved despite a lack 

of complete convergence in the global error 

energy norm due to the singularity. Figures 9 and 

l0 demonstrate convergence of the traction at 

specific points for the EE based mesh which 

imply a significantly srnaller relative error in the 

traction than the 5-6% global error energy norm 

of Figs. 7(b) and 8(b). The implication is that 

the global error in energy norm alone is not a 

sufficient measure of solution convergence. A 

combination of both global and local error esti- 

mates is desirable, especially for problems which 

admit singularities 

Figures l l ( a )  and (b) show the differential of 

normal traction as a function of logarithmic DOF 
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Fig. 11 Results of local convergence computed by 
traction differential approach as a function of 
logarithmic DO[:" for the axial stress at point 
Q. : (a) mechanical loading, (b) thermal 
loading. 

the in case of the mechanical and thermal axial 

loading, respectively. The results show a consider- 

ably more rapid convergence for the traction 

compatibility to the EE mesh when compared to 

the RE mesh case. 

Figures 12(a) and (b) show the logarithmic 

differential of normal traction as a function of 

"logarithmic characteristic element length (nor- 

malized by a physical length), L/h" in the case of 

the mechanical and thermal axial loading, respec- 

tively. Here, characteristic element length repre- 

sents a normalized value of the RVE length in 

axial direction by the element length. The results 

show again a considerably more rapid conver- 

gence for the traction compatibility to the EE 

mesh when compared to the RE mesh case, 

Hence, it is found why EE meshes are better 

than RE meshes for convergence. An important 

implication of the FE preprocessing having singu- 

larities points out that the key role to obtain the 

computational efficiency is shortening eharacteris- 
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Fig. 12 Results of local convergence computed by 
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tic element length as shown by the comparison of 

Figs. 9 and 10 with Figs. II and t2. As a resuh, 

Figs. 9 and 10 demonstrate the strong statement 

lot computational eff'iciency while Figs. tl and 12 

demonstrate that thele is nolhing really magical 

about the restllis. 

8. Conclus ions  

A procedure based on the calculation of a new 

approach using traction differentials at the "be/ '  

matrix interface to ensure global and local con- 

vergence has been proposed. The mesh refinement 

strategy is intended to the h based generalized 

approach using the irreguhir element at lhe fiber/ 

nlalrix interface, which yields significantly differ- 

ent patterns compared to the reguhtr mesh pal- 

terns. This difference has a critical bearing on the 

analysis and design implementing FEA. On the 

strategy, global and local error estimation tech- 

niques with a simple/~ based rnesh refinement are 

suggested based o n  m a p  mesh generation tech- 

niques for the application to discontinuous, or 

short fiber reinforced composite materials. The 

global error estimation technique is based on the 

total error in the energy norm, calculated sepa- 

rately for each material, and the local error esti- 

mation method is based on the fiber/matrix inter- 

facial traction compatibility criterion. Results 

show that the proposed mesh refinement 

approach offers a superior convergence rate when 

compared to h-based automatically refined 

meshes with near unity aspect ratio elements over 

this problem domain. This method is also simple 

to be programmed in an automatic map mesh 

generator and can lead to restlhs with a high 

degree of accuracy with a minimurn DOF mesh. 
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